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SUMMARY
, /
1697

The Uflyand-Mindlin plate equations in the form of two second
order equations in terms of plate-displacements are analyzed by the
method of characteristics for the case of an infinite plgte -
with a circular hole, Procedures of numerical integration along
the four characteristic directions including the technique of
handling the propagation of discontinuities, are established,

Numerical examples presented include the cases of transverse shear
and radial bending moments applied at the hole, The numerical accuracy

obtained is satisfactory for most of the cases,
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SYMBOLS

A = arbitrary constant

B = arbitrary constant

" c_ = plate velocity = JE/p(1-v2)

P
c, = shear wave velocity = /G/p _= JE/2p(1+v)
D = flexural rigidity = Eh3/12(1-v2)

E = Modulus of Elasticity

G = shear modulus = E/2(1+v)

h = plate thickness

k = time for a ramp to reach its maximum value
kZ = shear correction factor

M_ = radial bending moment

M, = tangential bending moment

Q = transverse shear stress resultant

r = radial distance

r_ = inner radius of plate

t = time

w = transverse displacement of the midplane
® = tangential direction

v = Poisson's ratio

p = density

¢ = rotation of the cross-section about the tangential axis

Subscripts r and t designate partial differentiations (except Qr and Mr)
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1, INTRODUCTION

- The research reported herein was motivated by the desire to
understand the response of the structural wall of fuel tanks of space
vehicles when impacted by meteoroids. After entering the fuel tank,
a meteoroid could create a high-pressure region in the liquid fuel,
capable of bursting the tank and causing catastrophic failure. The
tank wall will be treated here as a large plate with a circular hole,
under an axisymmetrical moving load. For simplicity, only linear
plate equations will be used, In the present report, only a con-
centrated ring load will be considered. Currently, the case of
arbitrarily distributed loads which vary with respect to time is being
studied and the results will be reported at a later date,

The classical Lagrange's equation for flexural motions of elastic
plates is parabolic in nature. According to this equation, the wave
velocity of sinusoidal waves is inversely proportional to the wave
length, For sharp transient inputs which excite waves of very short
length, the wave propagation velocity approaches- infinity and any
suddenly applied disturbances are felt immediately at an infinite
distance away, This is contradictory to experimental evidences.

By introducing correction terms due to rotatory inertia and
shear effect, Uflyand [1] and Mindlin [2] derived a set of governing
equations which are hyperbolic. Mindlin also showed that this set
of equations may be deduced directly from the three-dimensional
equations of elasticity. The theory behind these plate equations
is analogous to the Timoshenko beam theory, which also includes the

effects of shear force and rotatory inertia, Although it is more




realistic as compared to the classical Lagrange theory, the Uflyand-
Mindlin theory is still approximate, since it involves the assumption
of plane sections remaining plane, and the selection of a constant
appearing in the relation between average transverse shear stress and
strain. This theory gives accurate results for moderately short wave
length and moderately high frequency inputs, but it cannot be
considered accurate for very short waves.

Solutions of the Uflyand-Mindlin equations due to suddenly applied
concentrated transverse loads were obtained by Miklowitz [3] and
Lubkin[:4] . Both of them used the Laplace transform method and after
lengthy inversion processes, their results were in the form of
quadratures with integrands containing different combinations of Bessel
functions. To evaluate these results, numerical integration had to be
performed on the electronic computer, Of importance, also, is the
fact that their results can be extended only to inputs involving other
time functions of transverse shear (convolution technique) and not to
other types of inputs, such as suddenly applied moments.

Due to the hyperbolic nature of the governing equations, the method
of characteristics may be used to find the solution. Following an
analogous approach by Leonard and Budiansky['é] , Jahsman [6] applied
the method of characteristics to the flexural equations of Uflyand and
Mindlin, He derived the physical characteristics, the characteristic
equations and the relations which govern the propagation of jumps at
the wave front, but he did not solve the characteristic equations behind
the wave fronts., Jahsman used Mindlin's '"plate-stress components' and

"plate-displacement components' as the dependent variables, therefore

his governing equations are first order differential equations consisting




of the plate-stress equations of motion and the plate-stress-displacement
equations, In the present report, the axisymmetrical case is con-
sidered and the method of characteristics is applied to the two second
order plate equations of motion in terms of the two plate-displacement
components ¢ and w, These results are compared with those obtained .
by Jahsman, |

The characteristic equations are then written in finite-difference
form and a scheme is developed to solve these equations numerically for
various inputs at the circular hole of an infinite plate. In particular,
in solving the problem with an input in transverse shear Qr’ a special
technique is introduced to handle the discontinuities along the steeper

wave front in a four-wave system, A few numerical examples are presented.




1I. Characteristic Equations

The Uflyand-Mindlin equations in polar coordinates for an
elastic plate (with no surface tractions) under axisymmetrical

loading conditions are

My "‘(Mr e) Qr = %i ‘aa:t% 1)

eh i @
M=D [ 3% + 3 ¢] ®
[Fvae] 2

Qr=2:6h[0+5¥] ®)

These equations are identical with (3) and (4) of [6], with

Mre = Qe = 3/30 =0 ., They may also be transformed into (2) of

[3]. The system of equations (1) to (5), which will be considered as the
stress-displacement approach, are hyperbolic equations and their
characteristic directions and characteristic equations have been

derived by Jahsman [6]. In this report, we shall follow the

displacement approach wﬁich uses a system of two second-order

equations involving ¢ and w. The method of characteristics is

applied to these two second-order equations., Substituting (3),

(4), and (5) into (1) and (2) we have
24 _ ok 3¢ _ A, Gh +L p-L1ae
%F? '\%D_ ott (d) + ) r ror ©
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These two equations are also hyperbolic and their physical
characteristics, or characteristic directions, are

It .
I-} :‘ﬁ—:— = % Cp (8

]IF} -jf =+, ©

These represent four physical characteristics; the vertical

direction dr = 0 is not a characteristic., This is different from
the results obtained by using the stress-displacement approach,

where in addition to these four characteristics, the direction dr = 0
is also a physical characteristic, as shown in Appendix A. Although
dr = 0 is a'degenerated c¢haracteristic associated with static dis-
continuities, the characteristic equation along dr = 0 does supply
the fifth equation for the five variables ’t' Wes Mr’ Me, and Qr .

In using the system of equations (6) and (7), the condition of
continuity in the displacement function ¢ supplies the additional
equation required, as will be shown below, For a plate in which E,
p, and v are constant the two wave speeds, as given by (8) and (9),
are constant and the physical characteristics are straight lines
when represented in the r,t-plane,

The characteristic equations (sometimes known as the compatibility

equations) along I*-and I° are, respectively,

-'qdfbtidcbr: I[KDQL((D+M/)+%-%]A'~ (10)

where the upper signs refer to I', the lower signs to I ., The

characteristic equations along I1* and I1I° are, respectively
- _| - i
dwr ¥ e, dwy = ‘[—r (¢+Wr)+ ¢r]dr Y
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These four equations, (10) and (11), govern the variation of the
variables W Wes ¢r’ ¢t' and ¢, along the physical characteristic

directions, An additional equation based on the continuity of ¢, or

dd = ¢rdr + Pidt (12)

can be written along any direction, For instance, along a vertical

direction dr = 0, (12) may be written as

dd = P dt (13)

Along 1* and 17, it becomes

dp = (o % Cbt.—é—‘,)dr (14)

Or, along II* and II”,

do = (¢,. id}t ‘Kllcz)dr (15)

Equations Governing Discontinuities

The characteristic equations (10) and (11) are applicable for
continuous fields with possible discontinuity in the second derivatives
of ¢ and w along the physical characteristics., Along these directions,
discontinuities in the first derivatives of ¢ and w can also exist,
but these will not be governed by (10) and (11). Following a similar
procedure as in [6]}, [7], and [8] it is shown in Appendices A and B
that discontinuities across I and I~ are governed by the following

equations

g‘b\- = Ar"’/z (16)

Sd.= 1¢p Ar (17)
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SM, =DArk (18)
SM, = ¥DAr " (19)

S'W'r: SW'\-, = SQr:O (20)

where, for example, 6Mr designates the abrupt change or "jump" in

M. Similarly, across 11* and 117, we have

Swr = Brt (21)
Swy = T ke, Brte (22)
SQr = B, GhBr (23)
§$é. = §O = SMr = §Mo= O (24)

]

It should be noted that in deriving (16)4to (24), the conditions
Sw = 8¢ = 0 have been used; i.e,, only continuous w and ¢ functions

are being considered.

Initial and Boundary Conditions

The problem treated in this report involves an infinite plate
with a circular hole of radius T i.e., the region T sr<=. The
proper initial conditions for this problem require the specification
of all the four variables ¢r’ ‘t’ L and we at t = 0, For the

case of an infinite plate under no initial loads and velocity,

the initial conditions are

dlr,0) = P (r,0) = Wi (r,0) = wy ([o)= O, < r<O (25



At r = T,» a properly posed boundary condition requires the

specification of two of the four functions L ¢t’ W and w Oor

t'
alternatively, by using equations (3), (4), and (5), any two of the

five functions Mr’ Mgs Qr’ L and w, may be specified along r = T, .

Without surface tractions, the region between r = T, * cpt and
t = 0 in the physical plane (r vs. cpt) contains the trivial solution

of vanishing derivatives of ¢ and w, Along the line r = T, o+ cpt

these derivatives are also zero if the boundary condition at r = T,

t = 0, does not include discontinuities in the functions L ¢t‘ Mr'

or Me. When discontinuities in these variables occur at r = r

o’
t = 0, they will propagate along the line r = T+ cpt according to

(16) through (20).

When discontinuous functions of W, W, oT 0r are prescribed at

;8

r=1r, t=0, these discontinuities will propagate along the line

ol

r=r ¢+ kzczt , according to (21) through (24). Within the region

between the lines r = r_ + k,c,t and r = r_ + c_t , the derivatives
o 272 o p °’

of ¢ and w are in general different from zero, although they vanish

on the liner=r_ +c t .,
Y P

Numerical Procedures

In performing the numerical calculations, the physical plane is
first divided into a network by the characteéristic lines and the
differential equations are then written in finite-difference form in
terms of the values of the dependent variables at the mesh points of
the network, In the present problem, there are four families of
characteristic lines in the physical plane, with each characteristic
intersecting the other three, The resulting network contains too many
irregular mesh points to be practical for numerical calculations.

8
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This is different from the case of propagation of dilatational waves
as treated in Reference 7, In that case, the points of intersection
between dr/dt = c and dr/dt = -c characteristics, were so arranged
that they were always situated on the dr = 0 characteristics. In
treating wave propagation in Timoshenko beams, Leonard and Budiansky
[S] showed that there are also four families of characteristics,
just as in the present case. However, in the numerical solutionm,
they chose a special case where the wave propagation velocity of two
of the four families was identical with the other two families,
which essentially reduced it to a two characteristic family problem,
For the present problem, evenly spaced I* and I~ characteristics
are used as the main network as shown in Fig., 1. Only properties at
these mesh points will be calculated. The values of all the dependent
variables Wos Ve ¢r' ¢t, and ¢ at a typical interior point 1 may be
calculated if the corresponding values at neighboring points 2, 3, and
4 are known from previous calculations, Draw I1° and 11~ character-

e s . s s - + es
istics from point 1, which intersect the I and I characteristics

(which pass through point 4) at points 5 and 6, respectively. Values of

the variables at points 5 and 6 are obtained from those at points 2, 4,
and 3 by linear interpolation. The characteristic equation (10) with
the upper sign is then written in finite-difference form between
points 1 and 2, Similarly, along a I" between points 3 and 1, along

a 117 between points 5 and 1, and along a II  between points 6 and 1,

the corresponding characteristic equations are also expressed in finite-

difference form. These finite-difference equations are



Along 1 * :

%4, [q)t,; ¢’t~‘:] [(b (Pr,_] _L% (r‘ -ﬁ) {q)tz + an}
_(rl—rz){(btz/rn?'} + (r! "rz) {(bn_z/r.z} (26)

Along I° :

800, [00-00] = b (- we,

+(r - a){cb.a/ﬁa} (n rs){¢re/“3}

Along I1* ;

2N

(28)

Along II” :

[vw.—. - vm] + «R—l;.;z [w;:'—v\tte] = - 'Tli {43,6 + wr‘e} (rn-re)

- CDne(ﬁ —r6)

(29)

In addition, the continuity condition for ¢ along dr = 0, equation (13),

in difference form is used,

b - by = by, (t,-t,) (30)

10
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In these equations, (26) to (30), a numeral subscript indicates
the point at which the quantity is evaluated, a double numeral
subscript designates the average between the two points, These
five equations, (26) to (30), can be solved for the five unknowns

¢’ ¢rl ‘t' v f ] and"

r ¢ 3t point 1. Notice that in writing these

equations only central differencing and averaging operations have
been used, and since the equations are linear, the truncation
error is of the (ar)? type.

For points along the line r = L the 1" and 11" character-
istics, represented by equations (26) and (28), are absent, Since

two of the variables b0 b, W and w_ are specified along the

T’ t
T=rT, line, the remaining three equations (27), (29), and (30)
are sufficient for finding the three remaining unknowns, i.e.,

¢ together with the two unspecified variables among ¢r’ ’t’ L

and LA If Mr and Qr are specified along r = T, then eqs. (3)
and (5) will replace eqs. (26) and (28) and the system of five governing
equations necessary for the determination of the five variables is

again complete,

Approximate '"Jump Line"

When the input at r = T, involves discontinuities (jumps) in Qr’

W OT W these discontinuities propagate along the 11* line which

tl
has an equation r = T, + ut', where yu = kzczlcp and t' = cpt. This

line, in general, does not intersect the main network at the mesh points,
as shown in Fig, 2, One way of treating this line is to introduce a

new irregular mesh point wherever this line intersects the main

network, This would introduce a considerable amount of complexity and

therefore, is not being used here. 1Instead, the straight line

11



r=r + ut' will be replaced by a line passing through regular mesh
points, but with a discontinuous slope. This line will be called the
approximate jump line or simply, jump line. The construction of

this line and the procedure in treating the jumps across it will be
given below,

Let us introduce a new coordinate system (a,B) which consists of
the I" and I” characteristics as shown in Fig. 2. The finite-difference
network is then composed of constant a and constant 8 lines, with
constant increment Aa = AB . The point of intersection between the
line r = T, * ut' and a particular a = constant line, say a = m(la)

line, where m is an integer, is at

B = (|+ f") m (Aa) (L)

In general, this B is not an integer and therefore is not located at
a regular mesh point, In constructing the jump line, this point will
be moved to the nearest regular mesh point along the a = m(Aa) line,

This is achieved by letting

B = (l e m(ad) = (n+ ) A (32)

where n is an integer and 0 < € <1 ., For a particular value of m,

if € < 0.5, the jump point is moved to a = m(Aa), B = n(4a); if € 2 0.5,
it is placed at a = m(Aa), B8 = (n+l1)(8a). The jump line is then drawn
by connecting these points with straight line segments of constant 8

or constant r, shown in Fig, 2(a) as a heavy ''zig-zag" line, It is

evident that as the mesh size Aa approaches zero, the jump line approaches

the straight line r = T, * ut' as a limit,
At the mesh points on the jump line, each of the variables Wy Weo

and Q.. assumes two values, e.g., W (unjumped value) and LA Swr

12




(jumped value), etc., where 6wr, 6wt, and GQr are calculated from (21)
to (23). The unjumped values of these variables should be used in
these finite-difference equations which connect the points on the jump
line with points to the right of the jump line; the jumped values of
the variables on the jump line should be used for those equations
connecting points to the left of the jump line.

Unjumped values at points such as A and B, which are not situated
at the upper end of the vertical line segments of the jump line, may be
calculated hv the regular set of finite-difference equations (2o} to (30).

Values of all variables at point F are calculated by the same set
of equations, with the jumped values at points A and B. To calculate
the values at points which lie at the upper end of the vertical line
segments, such as point G, a different calculation procedure is employed.
In the finite difference equations (26) and (28) written along the I*

and 11" waves (passing through point G) we must use the jumped values

.at point B and the jumped expressions of the variables at point G, i.e.,

LA thG’ etc., In wriéing (27) and (29) for point G, the unjumped
values at B and the unjumped expressions at G must be used. In using
(30) for point G, no special procedure is required since this equation
does not contain any variables with values which jump when crossing 1,
Thus, for point G, we have again five equations for the five unknowns
Ye6* ¥re* % %rgr 2 4G -

An alternate procedure for approximating the r = T, * ut' line is
as follows., The approximate jump line is constfucted by straight constant
e and constant 8 line segments, as shown by the heavy line in Fig. 2(b).
At points such as A', the unjumped values of the variables are calculated
first; whereas at points such as C' the jumped values are calculated from
the five finite difference equations. To calculate the unjumped values

13




at B', the amount Sw and Sw must be subtracted from the previously

rC' tC’
calculated jumped values at C', before substituting them into the finite

difference equations,

VII.Specific Examples

A few examples with different inputs at r = r, are presented below.
These include inputs of ramp Qr' ramp Mr’ and step Qr' Unfortunately,
there are no solutions by any other methoés which can be used to com-
pare our results, Whenever possible, we shall calculate the long time
asymptotic solution and compare it with the corresponding static solution.
In [3] , the case of a plate without a central hole is solved. In the
hope of making some comparison with [3] , a plate with a very small
hole is chosen for our calculation. Unless otherwise specified, the

plate dimensions and elastic properties used for all examples are as

follows:
r, = 0.025 in E = 28 x 106 psi
h = 0,125 in v =03
o = 7.41 x 10”*1b-sec?/in k2 = 0.85
Ar = 0,0125 in

The calculated plate velocity cp is 2.03774 x 10° in/sec., and shear
velocity k,c, is1.11146 x 10° in/sec. The value for the shear correction
factor kg should be between 0.76 and 0.91, [2] . Since the value of 0.85
was used in [3] , the same value is used here for comparison purposes.,

The calculations were performed on an IBM 7040 computer, with an
average running time of 20 minutes for each example,

A. Ramp Qr Input

The first example is that of a plate under ramp Qr and zero Mr

input at r = Toe for which the proper boundary conditions are

14
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at | r=7T, t >0, Hr =0
Q = (1/k)t 1b/in fort <k
=1 lb/in fort > k

where k = 1,227 usec. is used.

The response of the plate due to this input is shown in Fig. 3.

Fig 3(a) shows the shear force Qr plotted as a function of time, at
three different radii. On the curve for r/h = 1, four points are
marked and labeled 1, 2, 3, and 4. Points 1 and 2 correspond to the
time of arrival of the I’ and II' waves, respectively, from r = T

t = 0. Points 3 and 4 are at the time of arrival of the I' and II'
waves from r = r,, t =k, i.e., the point of discontinuous eroldt

in the input. The change in slope of Qr is barely discernible at
point 4. As the wave propagates outwards this discontinuity in slope
diminishes and cannot be noticed at r/h = 2 or r/h = 3, At r/h =1,
the Qr curve first goes downwards, then increases to a peak value, and
eventually settles to an asymptotic value at large time. From the
static equilibrium of the portion of the plate bounded by T, and an

arbitrary r, we have
2“- ro Q‘.o = 2“’!" Q"

or
Q-L‘Q_
rTor
for Qro =1, Atr/h=1, orr =0,125 in,, the static Qr is 0.20.
The calculated asymptotic value of Qr approaches this static value at
large time, as can be seen from Fig. 3(a). At r/h =2 and r/h = 3
there are no peak values for Qr' although the long time values also
approach those of the static solution.

In Figs. 3(b) and 3(c), the moments Mr and Me are given as function

15



of time, at the three radii, As expected, at large times the absolute
values of the moments increase monotonically. The maximum moment in

the plate is M, which occurs at the hole, r = Ty This moment, as a

e
function of time, is plotted separately in Fig. 3(d).

Calculation of this problem with a mesh size one-half of the one
used above gives essentially the same numerical results. This indicates
that the accuracy by using the present mesh size (Ar = 0.0125 in.) is
satisfactory.

B. Ramp Mr Input

The radius of the hole for this case is taken as ro = 0,25 in,

The proper boundary conditions used are

at r = L t>0 Qr =0
Mr = (1/k) t in-1b/in for t < k
= ] in-1b/in for t > k

(k = 1,227 usec.)

For a plate of this geometry under a static load Mro at r = T it can
be shown that the static solutions are, [9] .

Q. =©

2
Mr:"Mez(":"F) Mo
Our calculated results are presented in Fig. 4. Fig. 4(a) gives

the Mr vs, t curves, 4(b) gives the Me vs. t curves and 4(c) gives the
Qr vs. t curves, all evaluated at three different radii. All curves
approach their corresponding static values at large time. The moments

and shear attenuate very slowly, for instance, at a time of 30 usec.

all values are still slightly different from their static values.

16
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C. Step Qr Input

Due to the approximation involved in replacing the line r = T, * ut!
by the jump line, the accuracy in the case of the step Qr input is not
as good as those of the ramp inputs, where the jump line approximation
is not used. Therefore, a smaller mesh size, Ar = 0.00625 in. was used.

The boundary conditions are

at r = T Mr =0
Qr =0 fort =0
= 1 1b/in fort > 0

Because of the small hole size (ro/h = 0,2), the response of the
plate should be very close to that of a plate without a hole, Strictly
speaking, a zero slope boundary condition (¢ =0 at r = ro) with T,
shrinking to zero represents more closely a plate without a hole.
However, our calculations indicate that the results of Mr = 0 and that
of ¢ = 0 are almost identical in regions not too close to the hole.
Comparing our Fig., 5 with Figs. 3, 4, and 5 of [3] it can be seen that
our Qr’ Mr, and Me curves are in general agreement with those
calculated by Miklowitz for a plate without a hole,

A slight difference exists, however, between our results and
those of [3] « According to [3] , the magnitude of GQT, the discon-
tinuity in Qr across the 1§ wave front, is infinity. Our equation (23)
indicates that GQr decre;ses as the wave propagates outward and is

172 .J If the applied concentrated shear load is

proportional to %/}
finite, and if this shear load is distributed over a circle of small
but finite radius, To» such that Qro is finite, then, Qr will always

be finite and will decrease in magnitude as it propagates outwards.

The propagation of an infinite GQr in [3] is due to the fact that a

17



finite shear force, Q , is being treated as an infinite shear per unit
length, Qr' at r = 0, as shown below. For a suddenly applied (step)

shear force of constant magnitude, we have

Q=2wro Qp, =12mwr, Sqrg

According to equation (23), then

§Qr = §Qu® =33

As T, approaches zero, the limit value for GQr is SQ‘. = rl‘;f-‘::) _Z%W
The accuracy of the calculation for this case is not to our
satisfaction. The long time asymptotic value of Qr at r/h = 1 is
0.225, instead of the static value of 0.2, as shown in Fig. 5(a).
The calculated data for Mr and Me have considerable oscillation at
large time, In Figs. 5(b) and 5(c), for t > 2usec,, the average values
are plotted in solid lines and the dotted lines indicate the range of
scatter of the data, The data presented in Fig. 5 were calculated by
the alternate procedure which approximates the 11° 1ine by the heavy
line in Fig, 2(b). To improve thé accuracy, mesh sizes smaller than
0.00625 in, are currently being employed. In addition, the procedure
using the jump line shown in Fig. 2(a) is also being programmed on the

computer,

D. Ramp Qr Inputs with Different Slopes

Three ramp Qr inputs with successively steeper ramp slopes are
calculated and the results compared with those due to the step Qr input,
The curves for r/h = 1 in Fig, 3 for a ramp input with k = 1,227 ysec.,
and the curves in Fig. 5 for a step input are replotted in Fig. 6. In

addition, the curves for Qr’ Mr’ and Me due to ramp inputs with

18
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k = 0,613 and k = 0,307 are also included in Fig. 6. These results
show that the response of a plate due to ramp Qr inputs with successively
steeper slope approaches that due to the step Qr input,

The fact that the response due to a step input can be approximated
by that due to a steep ramp input, and vice versa, is very helpful.
A true step input cannot be realized in practical cases, i.e., all
loads must rise with finite time, Usually, as in the case shown in
Fig. 6, the response due to a step input is more severe than that
due to ramp. Therefore, the stresses and moments due to a step input
may be used as the upper bounds for those due to actual loadings.
Comparing the responses due to step and steep ramp inputs; if the
solution for one is difficult to obtain, the solution for the other

can be used as an approximation,
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APPENDIX A

Method of Characteristics - Stress Approach

Jahsman [6] has applied the method of characteristics to the
stress formilation, (or more precisely, stress-displacement
formulation) equations (1) to (5), of the plate problem. He used
a set of plate equations with r and & as the space variables and
expanded the solution in Fourier series in tefms of 8 . In this
appendix, the axisymmetrical equations will be used, and the results
will be compared with those of Jahsman.

Differentiating (3), (4), and (5) with respect to time and using

¢t and w, for 3¢/3t and 9w/3t , respectively, (1) to (5) become

O Me \ - a

W“"“F(Mf_ Mg) - Qp = ﬁi (A.1)
2 G | - W

T+ Qr = ﬂ g——ft (A.2)
3aM

at" =D (—%%— + -'% (bt) (A.3)
_a_.ﬁ.a')t“ =D (-%"- + 2 %gt) (A.4)

595 = ¥ (60 + 39)
where

u:—e‘lzf s B=@hs ™ T:A:Gh
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These constitute a set of linear, first order equations for the
variables Mr’ Me, Qr' LA and L In regions in the physical plane

(r,t-plane) where these variables are continuous, we may write

dMy = %—'%ﬁdr + %%-‘:- dt (A.6)
JMeZEMrQ c\r+%¥:ﬁdt (A.7)

dQr =98 dr + 8= 4t (A.8)
doy =40 dr + 48 4y

(A.9)
- dws 3
dw = Gassir + G 10

Equations (A.1) to (A.,10) may be considered as ten algebraic equations
for the ten derivatives of thc five variables. Solving these

equations for aMr/ar, we obtain

qr- F(Mr-Me) 0 OO0 O O - 0 O
- Qr ©O loodo o 0 0 -B
D¥ P+ I coO0OO-p O O ©
D' b © 00O V- 0 O ©
T ot O 000 OO -§ ©
dMr dt o000 OO0 © 0
d Me O 00Odrdt O © O ©
d Qr Odrdt OO O D O ©
d we O 000D OO O drdt

IMr _ d &¢ O D0 o oOdrdt 0 ©
or } O 00O OO -4 00
° O |l 0000 o o-B
o | O0O©00-D © 0 ©
o 0O Ooo 1-py 0 © ©
(0] 0O 01 oo ©0 0o~-¥% 0
dr dt 00O OO0 0o OO0
o) 0 codrdt 0 0 © ©
o] 0drdt00O0 © O 0 O
o 0O ODO0O0 O O dr dt
o) © 00 0Ddvrdt ©C ©
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(dr) o [X' S c\r) {d M- [’)}dxtdr +rdd, + ——E—-‘Mt—md{:]}

dr [ D) - a(dr){l[p (dr)* - ¥ (aﬂ]

(A.11)

If the distribution of the five variables along a given line is
known, this equation and the other nine equations for the remaining
derivatives may be obtained and the process of numerical integration
may be carried out. This integration procedure fails if the denomi-
nator of/(A.li) vanishes, which results in the following five

physical characteristics

et bl e

U g a - L

M dr =0 (A.14)

Along the characteristics II', II”, and III, the numerator of (A.11)

vanishes identicnlly. Along 1" and 17, the vanishing of the numerator

upon substitution of dr/dt = t'cp, yields

M cp £8 A, = (r Q- My +Mlp 2 Vcp S° ¢, ) 4 (A.15)

Thus along I* and I°, (A.15) are the governing equations where only

the variablesand their total differentials appear. Across all these

characteristics, the first derivatives of the five variahles may be

discontinuous.
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Solving (A.1) to (A.10) for any of the other nine derivatives
yields the same five physical characteristics, Just as in the case
of aMr/ar » the numerators of the solution of aMr/at , aMe/Bt ,
3¢,/9r , and 3¢ /3t , all vanish identially along II", II”, and III,
The vanishing of the numerator of each of the§e solutions along 1t

and I~ also results in (A.15).

The solution of awt/at is

dws ___(dt)z Ex(dr)z ~ DU’ JD Q#Qr.&rc_ 5‘4{:(¢*+-%1$)]__ (A.16)
9t dr[DWR* - [P U - ¥ dt)*]

Along 1%, I°, and III, the numerator of (A,16) vanishes identically;

along II" and II™ , with dr/dt = + k.c , the vanishing of the
» 272

numerator yields

%t} dQr ¥ fhlkgcz dwy = —(Qr ¥ gh ‘ﬂzcz r d)t\g‘];_ (A.17)

From the solutions of aQr/Br , #Q /3t , and awt/ar , we obtain the
same results as from aw /3t , i.e., along 1%, 17, and III, the
numerators vanish identically, and along 11* and II7, (A.17) is
obtained,

The solution of aMe/ar is

OMe Dy(dty [¥ - B (d*'m (A.1R)
3 dr [D(t] - k(] [BUY - ¥ ()]

where

R= er +[%HHZ —|]A%’1.ﬁ. - o(%tt A¢t "(Qr _Mﬁr;.__M_e.)dr
B -v)D -] 4= 4t
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Along 11* and 117, the numerator of this vanishes identically; along
and I~ the vanishing of the mmerator yields (A.15). In addition,

the vanishing of the numerator along III, dr = 0, yields
- EW 4 dt '
dMg— VM, = 53 & | (A.19)

Notice that (A.19) may be obtained directly by combining (A.3) and
(A.4) along dr = 0,

The results in this appendix are in agreement with those
obtained by Jahsman, except for a slight discrepancy when compared
with his (15)., It is believed that the last term in ihe bracket of
the second equation of tlS) of [6] should have a + sign instead of : ;
also the second of (15) of [6] should be for his characteristic II1I
and the third of (15) for 1I,

The characteristic equations (A.15), (A.17), and (A.19) are
applicable for continuous fields with possible discontinuity in the
second derivatives of ¢ and w and the first derivatives of Mr' Me,
and Qr.* Across the physical characteristics, discontinuities in
the first derivatives of ¢ and w, along with discontinuities in Mr'
Me, and Qr’ may also exist, but these will not be governed by (A.15),
(A.17), and (A.19). Discontinuities in b b, W, W, Mr’ Me,
Qr occur when a finite step input (or jump inpu;) in these vériables

and
is applied at a particular r. The equations governing the propagation

of these discontinuities will be derived below following the general

procedure of [7].
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Figure A,1 Discontinuities Propagating Along a I* Characteristic

Writing (A.15) with the lower sign along I  and integrating

from points A to B (See Fig, A.1), we have

B
(Mrs = Mra)+ pt (84 = 02 = [ {Qr - M Mo = iy & L)
or |
ng*rcf,ot((cbt:O (A.20)

since only bounded values of Qr’ Mr’ Me , and ¢t are being considered
the right-hand side vanishes as dr - 0, Similar integrations along

11%, 117, and I11, yield, respectively

§Qr — by, ghfwy =0 (A.21)

§Qr +R.c.$h§w =0 (A.22)

§ Mg - M, =0 (A.24)
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In deriving these three equations, continuity of all variables along
I; has been assumed, thus as a limit,

SQ‘»'-: Qrc"' Qn\ = QrE-QrA = Qra_ Qra

Equations (A.21) and (A.22) immediately produce

§Q-=0
Sw-t='0

The variation of the functions GMr, M

<+
across I

o and 6¢t as they

propagate along 1* is obtained by writing (A.15), with the upper
sign, once along I; and then along I: , and subtracting one from

the other., As I; approaches I; , we have
dEM)~ aced(§L) =(- SMy+ §Me + Vepat § 0)A- (4 24
Substitution of (A.20) and (A.23) into (A.24) results in

%LMA:-_JL (A.25)
Me 2r

which upon integration yields
- =l
SM,. =DAr , (A.26)

where the constant of integration has been taken as DA, consistent

with (18). From (A.26), (A.20), and (A.23),

$M,

VDAr 2 (A.27)

1}

§ o,

Since we are limited to bounded functions of Mr’ M

~cp Ar 2 (A.28)

9* and ¢t , it

follows from (3) and (4) that ¢ must also be bounded, therefore ¢ is
alwa&s continuwous, or 8¢ = 0 . Alternatively, if we limit ¢ to

continuous functions, then it follows that Mr' M and ¢ are

9’ ¢t'
always bounded. Writing the equation d¢ = ¢rdr + ¢tdt along I; and
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I'; » and subtracting one from the other, we obtain

O= o dr + {brdt

or
§d-=- '{:Sq}t dt == é\, § &t (A.29)
Therefore,

Sbe=A p¥ (A.30)

Repeating this process for discontinuities across I~, II*, and II”,

we have the following results:

Across I* and I
Sd\- =Ar'%
Sd’t:-? C?Ar“yl

ng:DA e (A.31)
§ Me= o/DAr"

§Qr=fw=fw=0

Across I11* and I1°

Sw.. =B 2

Swy =% Bc, Brte

SQY = R: Gh Br-'/z (A.32)

S‘br =S¢t=SMr=SMe=O
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APPENDIX B

Method of Characteristics - Displacement Approach

The method of characteristics as applied to the system of

equations (6) and (7) is outlined in this appendix. In regions in

the physical plane (r,t-plane) where the variables $os by W, and

T

W, are continuous, we may write

d(br = ¢rrclr + Cbre dt
dPe = Prydr + O dt
dw}'z W'rr&' + w-rtdt

dwy = Wredr £ wyedt

These equations, together with (6) and (7), form a system of six

simultaneous equations as follows

O ‘.-l' Out =F
Wor —ll\Ni,t = H
dr d)rr' +dt ¢l"t =d¢r
+dr Pre +dt Oy =dby
dr Wi +dbwey =dwy

drwyrg +dt wie =dwy

where
2

- : L) 1 |
P-Aigh(or38) s fo-1 32

— b

T qH—%%rt)— or

_ o
A= 2o
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Equations (B,2), in general, may be used to solve for the six

second derivatives of ¢ and w, Along certain directions, however,
indeterminate solutions for these second derivatives will be

obtained from (B,2), These directions will be called characteristic,
and lines along these directions will be called the physical
characteristics, or simply characteristics. Across these character-
istics, the second derivatives of ¢ and w may be discontinuous.

Solving (B.2) for ¢rr' we have

F o0 - ©O o] o
H o o l o -,
a9 dt o o) o o
ddy dr  dt O o) o
dwv, 0 O dr dt o
dwy © o O dr dt
D = i 0 -2, © o0 o©
o o © 1 o A
dr dt © o o
O dr dt o) o) o
O 0 0 dr dt
o O° @) 0 dr dt

_ Rald -] [Ad dedt + FHF - 2,d0rdr]) 5.3
Ted® - 3, @) T - R, @) '
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This function is indeterminate if both mumerator and denominator
are equal to zero. The vanishing of the denominator yields the

following four families of physical characteristics,

'\ 4t~ —'—Tf *
1 4= trk=the

Along the directions 11* and II', the numerator of (B.3) vanishes

identically; along 1* and 17, the vanishing of the numerator yields

+ 2
II- do, 3 ceder=7 qa[l—és(w we) + &y - &) gy

(B.4)

which are called the characteristic equations along dr/dt = cp .
Solution for each of the other five second derivatives gives the
same four physical characteristics., The numerator of the solution

for w is
rr

R, - TR d g = 2o -]

which vanishes identically along I* and I”, and yields the following
characteristic equations along 11° and I1° »

T+
%, dwe 3 g =-[{2xd 1 o, Jur &

’

The vanishing of the numerators of ¢rt and ¢tt give the same results
as those from ¢ ; results from the solutions of w__ and w__ are
b o rt tt

identical to those from Wop * Equations (B.4) and (B.S) are the
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governing equations along the characteristic directions for the

variables ¢, ¢r’ ¢t’ L and w By using (A.3), (A.4), and (A.5),

£ °
it can be shown that (B.4) and (B.S) can be derived from (A.15) and
(A.17), respectively.

The equations governing the propagation of discontinuities
can be derived by a procedure similar to the stress formulation in

Appendix A, Integrating (B.4) along I~ from A to B, (Fig. A.1),

we may write

B D2
(d)te "cbtn)"'cf(d’rs— q)rn\ = G [‘oﬁiﬁsl'\'(m +wi) + %‘_——9"—*]4,‘.

R
or

gd)t + Cp g‘br:O (B.6)

The vanishing of the right-hand side when dr -+ 0, is dependent on
the boundedness of ¢, L and L
Similarly integration along II~ from A to C and I1* from A to

E yields, respectively

(gvv}._jit; fw, =0 (B.7)
§wr +ﬁ;‘<-:: fw, =0 (B.8)

In writing these equations, we must require ¢, ¢r’ and w. to be

bounded along 11~ and II* ., Equations (B.7) and (B.8) imply that

§wr=0

dr "'
across =— = 4 ¢
Swe =0 dt ?
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The variation in amplitude of the functions “t R 6¢r as they
propagate along 1% is obtained by writing (B.4) with the upper

sign along I; and I; and subtracting one from the other, As I;

+

1 » We have

approaches I
dd) - cpd(§d)=+cp + § Ordr (8.9)

Combining (B.6) and (B.9) and integrating, we obtain
. |
S(br:Ar‘ /2

which is identical with the first of (A.31). By similar procedures,
all of equations (A.31) and (A.32) may be obtained by the displace-
ment approach, The third of (A.31) is obtained from (A.30), (3)

and the condition that ¢ must be continuous, or 8¢ = 0 .,
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